NOISE IMMUNITY OF THE ALGEBRAIC GEOMETRIC CODES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding Algebraic-Geometric Codes

Error-correcting codes derived from curves in an algebraic geometry are called Algebraic-Geometry Codes. The past couple of decades has seen extraordinary developments in the application of the ideas of algebraic geometry to the construction of codes and their decoding algorithms. This was initiated by the work of Goppa as generalizations of Bose-Chaudhuri-Hocquenghem (BCH), Reed-Solomon (RS), ...

متن کامل

Quantum Algebraic-Geometric Codes

This is a Part III essay aiming to discuss the contruction of quantum error-correcting codes through the use of the theory of algebraic function fields, which produces codes with asymptotically good parameters. This exposition emphasises constructibility and several applications of the main theorem (theorem 6.2) are given. Prerequisites are the first 12 lectures of the Part III course Quantum I...

متن کامل

On the Construction of Algebraic-Geometric Codes

In this paper, a new view point to linear codes is presented. A concept level of linear codes is introduced and a bound of linear code’s level is given. It can be used to simplify the construction of Algebraic Geometric Codes. In particular, we define a class of codes which can be considerated as generalized RS codes and can be constructed via symbolic computation.

متن کامل

On the decoding of algebraic-geometric codes

This paper provides a survey of the existing literature on the decoding of algebraic-geometric codes. Definitions, theorems and cross references will be given. We show what has been done, discuss what still has to be done and pose some open problems. The following subjects are examined in a more or less historical order. 1) Introduction 2) The decoding problem 3) Algebraic-geometric codes 4) Th...

متن کامل

Algebraic Geometric Codes on Surfaces

— We study error-correcting codes constructed from projective surfaces over finite fields using the generalized Goppa construction. We obtain bounds for the minimal distance of these codes by understanding how the zero sets of functions on a surface decompose into irreducible components. We also present a decoding algorithm for these codes based on the Luby-Mitzenmacher algorithm for LDPC codes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computing

سال: 2019

ISSN: 2312-5381,1727-6209

DOI: 10.47839/ijc.18.4.1610